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ABSTRACT

Developers have access to a wide range of storage APIs
and functionality in large-scale systems, such as rela-
tional databases, key-value stores, and namespaces. How-
ever, this diversity comes at a cost: each API is imple-
mented by a complex distributed system that is difficult
to develop and operate. Delos amortizes this cost by
enabling different APIs on a shared codebase and oper-
ational platform. The primary innovation in Delos is a
log-structured protocol: a fine-grained replicated state
machine executing above a shared log that can be layered
into reusable protocol stacks under different databases.
We built and deployed two production databases using
Delos at Facebook, creating nine different log-structured
protocols in the process. We show via experiments and
production data that log-structured protocols impose low
overhead, while allowing optimizations that can improve
latency by up to 100X (e.g., via leasing) and throughput
by up to 2X (e.g., via batching).

CCS CONCEPTS

o Computer systems organization — Reliability; ¢ Soft-
ware and its engineering — Layered systems.
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1 INTRODUCTION

Replicated databases form the foundation of modern
large-scale services. Facebook operates multiple such
databases, each providing some specific API, such as a
MySQL deployment; the ZippyDB [15] key-value store;
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Figure 1: Log-structured protocols are replicated state
machines that can be layered like protocol stacks.

a ZooKeeper [31] service; the LogDevice shared log ser-
vice [1]; and a Redis-like [2] data structure store. Each
such database can be divided into two halves: on top, a
single-node state machine with some external API (e.g.,
a single MySQL server); and underneath, a consensus
protocol that replicates this state machine.

Recent work has simplified such databases by layering
a shared log API over the consensus protocol (i.e., the
bottom half), allowing a single protocol to be used under-
neath different databases [9-11, 23, 55]. Unfortunately,
the state machine for each database (i.e., the top half)
remains an independent, complex, and large monolith
that does not share code or operational tooling with its
counterparts. Supporting each database in production
requires a team of expert engineers who understand its
specific internals and toolchain. No opportunity exists
for amortizing this overhead across databases: for exam-
ple, the ZooKeeper and MySQL services at Facebook
are maintained by entirely separate teams, each with its
own codebase, tooling, and operational best practices.



In this paper, we observe that a significant fraction
of the state machine for each replicated database com-
prises generic logic that does not vary between databases.
Each database implements basic functionality for effi-
cient playback and coordinated trimming of the shared
log; performance optimizations such as batching, group
commit [22], piggybacking [17], and lease-based local
reads [27]; semantics such as exactly-once execution [39]
and session-ordering [34]; tooling for repairing state and
monitoring performance; and features such as non-voting
followers [31] and Point-in-Time restore [8]. Given this
similarity, we ask the question: can we implement such
functionality once and re-use it across different data-
bases?

Accordingly, we propose simplifying replicated data-
bases via the novel abstraction of a log-structured proto-
col: a protocol layered over a shared log (see Figure 1). A
log-structured protocol consists of an engine executing
on each end-host, interacting with its counterparts on
other hosts via the shared log. An engine can be viewed
as a fine-grained replicated state machine [49] (or equiv-
alently, a log-structured object [11, 55]), synchronizing
its local replica of shared state via appends and reads
on a shared log. Applications can be composed of multi-
ple such protocols, each of which has independent state
and performs some specific function. In this context, a
log-structured protocol is simply a way to decompose
the state and functionality of a replicated database into
smaller pieces.

However, log-structured protocols are not just repli-
cated state machines; they are also protocols that can be
layered as a stack over the shared log. Such a protocol
stack adds functionality over a shared log in much the
same manner as a network protocol stack over a conven-
tional point-to-point network [58]. New entries flow down
the stack towards the shared log, while existing entries
from the log flow up the stack towards the database. As
with a protocol layer in a conventional network stack,
an engine can piggyback headers on entries generated by
higher layers; filter or reorder entries before they reach
higher layers; and batch, encrypt, compress, or otherwise
mutate entries en route to lower layers.

We leveraged log-structured protocols in the design,
development, and deployment of Delos, a platform for
building replicated databases that runs in production
at Facebook. In prior work [9], we described how Delos
achieves one of its novel capabilities — online upgrades
of its consensus protocol — by virtualizing the shared log
API. In this paper, we explore a second goal for Delos:
allowing different replicated databases — with diverse
application-facing APIs — to share a common codebase
and deployment platform. An end-application can choose

a database with an API and feature set most suited to
its requirements, while obtaining identical durability and
availability guarantees.

Log-structured protocols played a vital role in realizing
this vision. We developed and deployed the first Delos
database — DelosTable — as a stack of engines with the
minimum required functionality. Subsequently, we incre-
mentally upgraded the production DelosTable service
without downtime; for example, we deployed a LogBack-
upEngine that coordinated the upload of the underlying
log to a backup store. We deployed a second Delos ser-
vice — a ZooKeeper clone called Zelos — by reusing code
across databases, repurposing the production-ready stack
of engines used by DelosTable. We tuned consistency for
each database via specific engines; e.g., we provided the
session-ordering guarantees required by the ZooKeeper
API by inserting an extra SessionOrderEngine in Zelos.
We also improved performance across both databases
by developing common engines (e.g., a BatchingEngine
that raised throughput by 2X; and a LeaseEngine that
reduced read latencies by two orders of magnitude). Fi-
nally, we customized roles within each database, en-
abling support for passive read-only followers that exe-
cuted a stripped-down subset of the protocol stack.

Many systems have abstracted out consensus as a
reusable library, either via a shared log APIT [10, 23]
or a State Machine Replication (SMR) API [43, 44].
Some systems [11, 55] have gone further by composing
application state from smaller replicated state machines
(e.g., composing a map from a set of linked lists). In
addition, layering in replicated systems has been explored
within the consensus mechanism [26, 42, 54]. Delos itself
layers consensus protocols (underneath the shared log
API), composing a virtual shared log from underlying
log implementations (as described in prior work [9]). In
contrast, this paper describes how Delos breaks new
ground by layering replicated state machines (above the
shared log API) as reusable, stackable protocols. To the
best of our knowledge, we are also the first to report on
the developer and operator experience for any form of
SMR, composition in a production system (prior systems
with similar goals [11, 45, 55] were research prototypes).
Contributions:

e We propose the novel abstraction of a log-structured
protocol: a replicated state machine over a shared
log that can be layered in a protocol stack.

e We describe the design, development, and deploy-
ment of two production databases constructed us-
ing log-structured protocols. DelosTable currently
serves 3.3B ops/day in production, while Zelos
serves 36.5B ops/day.



e We describe nine log-structured protocols, of which
seven are used in production.

e In our evaluation, we present production data show-
ing that log-structured protocols have low overhead;
and experiments showing that they can have an
outsized impact on performance (e.g., a 100X la-
tency improvement via the LeaseEngine; and a 2X
throughput improvement via the BatchingEngine).

2 MOTIVATION

When the Delos project was started in late 2017, Face-
book already operated a large number of distinct data-
bases in production. This diversity of storage options
placed a heavy burden on developers and operators, who
were required to understand, maintain, and improve
multiple complex distributed systems. In practice, large
teams evolved over time around each database. Develop-
ers and operators were not fungible across teams: for in-
stance, an engineer experienced in operating ZooKeeper
would find it difficult to be productive within the MySQL
deployment, and vice versa. Diversity was not uniformly
beneficial for end-users either, who appreciated the rich
variety of APIs available, but found it difficult to reason
about the subtle differences in fault-tolerance between
the options (e.g., ZooKeeper’s quorum-driven consensus
was more reliable than the primary-backup protocols
of replicated MySQL, which also had a dependency on
ZooKeeper for membership).

The Delos project was initially conceived with the
goal of adding a quorum-replicated Table store to this
menagerie of distributed systems, filling a gap for applica-
tions that required the fault-tolerance of ZooKeeper with
the relational API of MySQL. However, a secondary goal
soon emerged: could we implement the ZooKeeper API
on the same codebase as this new Table store, eliminating
the need to maintain and operate a separate ZooKeeper
service? At the time, ZooKeeper was the primary store
for the Facebook control plane, supporting thousands
of use cases. To replace it, we would have to faithfully
reproduce its features and idiosyncrasies. Changing all
the call-sites to use a different API was untenable due
to the difficulty and risk of such a migration.

2.1 A Choice of Abstractions

To implement ZooKeeper and a Table store on a single
codebase, we needed a low-level distributed substrate
responsible for durability, failure atomicity, and concur-
rency control. For the API of this substrate, we first
considered a key-value store or address space, either
with first-class support for transactions [16, 19, 24] or
some form of conditional put that can be used by higher

layers to implement locks and undo/redo logs [7, 47].
Internally, the key-value store is typically replicated us-
ing SMR [6, 19]. In this design, each application (i.e.,
ZooKeeper or the Table store) is responsible for trans-
lating from its own abstractions (e.g., a table or a file,
respectively) to the low-level APL.

Unfortunately, layering over a low-level API was not
sufficient for our immediate goal: we found it difficult
to implement a ZooKeeper clone over a key-value store.
In particular, ZooKeeper’s session-ordering guarantee
(stronger than linearizability [30] in its ordering of con-
current commands, which in turn can operate on com-
plex constructs such as watches and ephemerals) is hard
to achieve over a linearizable key-value store. Second,
ZooKeeper provides support for streaming, allowing non-
voting followers to play its underlying totally ordered
update stream. Both features emerge naturally from Zoo-
Keeper’s implementation of its API directly over SMR,
where the fundamental abstraction is a total order of
updates; but are difficult to extract over an intermediate
key-value abstraction that hides the total order or may
not contain one.

Building applications directly over SMR has other
benefits. We can replicate any existing single-node soft-
ware as long as it is deterministic (e.g., a SQLite [4]
database), retaining the features and reliability of battle-
hardened software; rather than implement new systems
from scratch over a low-level APT (e.g., a SQL database
over a transactional key-value store [6, 16, 50], or a Table
layer over an object store [7]). In addition, SMR-based
applications can optionally store their data within in-
memory or persistent NVM data structures [13, 18, 25,
57] that exactly match their own internal data structures;
mapping these to a remote key-value store or some simi-
larly narrow interface can be awkward, inefficient, and
limiting, as others have observed [5, 20, 36, 37, 56].

Accordingly, we chose to use SMR directly as our low-
level abstraction. Our initial design for Delos involved
a reusable platform layer exposing an SMR API, allow-
ing any arbitrary application black box to be replicated
above it. The platform itself is also a replicated state
machine, containing functionality generic to applications.
We hoped to create an hourglass architecture where
many applications (built by different teams with domain
expertise) could be replicated on the same reusable plat-
form, which in turn could run on any consensus protocol
(via Virtual Consensus [9]). In this manner, we hoped
to get the benefits of SMR while enabling reusability.

Unfortunately, structuring the platform as a mono-
lithic state machine limited its reusability. When the
ZooKeeper team at Facebook began building Zelos on
the Delos platform, they needed to modify the platform



layer to obtain additional properties such as session-
ordering guarantees, batching / group commit, and non-
voting modes. Having two independent teams modify
a monolithic state machine for entirely different busi-
ness goals was not sustainable; the common code turned
into a snarl of custom configurations and runtime flags
for toggling between the desired behaviors of the two
applications.

How could we retain the benefits of SMR, while still
allowing teams to incrementally modify and selectively
deploy parts of the common platform? The answer in-
volved layering state machines, as we now describe.

3 THE LOG-STRUCTURED PROTOCOL

A log-structured protocol is an implementation of State
Machine Replication over a shared log. An application
can use the protocol to consistently replicate state across
different servers. On each server, the application interacts
with the log-structured protocol engine via the SMR
API shown in Figure 2. Using the IEngine API, the
application can propose new entries to the shared log;
register an upcall for receiving new entries from the
shared log (by implementing the IApplicator API); and
sync to make sure that all entries in the shared log have
been provided to it via the upcall. The application stores
its local state in a persistent storage system (e.g., such as
RocksDB), which we call the LocalStore. The LocalStore
is a deterministic function of the underlying shared log;
it is updated exclusively within the apply upcall as the
engine feeds the application new log entries.

A log-structured protocol is itself a stackable repli-
cated state machine. Engines can be layered in a stack
(see Figure 3), with each engine acting as an applica-
tion over another engine (i.e., the upper engine calls
propose/sync on the lower engine; whereas the lower
engine calls apply on the upper engine). Equivalently,
an engine can implement the IEngine API in Figure 2
over another engine with the same API. Further, each
engine has access to local state in the LocalStore. When
a new entry is proposed to an engine, it can add its
own header to the entry before invoking propose on
the engine below it in the stack. Similarly, when a new
entry is applied on it by the underlying engine, it can
inspect its own header and modify its local persistent
state in the LocalStore before invoking apply in turn on
the layer above it.

The top-most layer of the stack is the application,
which exposes some upstream APIT to its end-users (e.g.,
a Table API, or the ZooKeeper API). The bottom-most
engine in the stack (BaseEngine) is specialized to oper-
ate directly over the shared log API. We first describe

template <class ReturnType, class EntryType>
class IEngine {
Future<ReturnType> propose(EntryType e);
Future<ROTx> sync();
void registerUpcall(IApplicator<ReturnType,
EntryType> app);
void setTrimPrefix(logpos_t pos);

}

template <class ReturnType, class EntryType>
class IApplicator {
ReturnType apply(RWTx txn, EntryType e,
logpos_t pos);
void postApply(EntryType e, logpos_t pos);
b

Figure 2: Log-structured Protocol Engine APIs.

a minimal stack consisting of an application and the
BaseEngine; and then describe how other engines can
be slotted into the stack.

3.1 The Application

Consider a single-node service that exposes some external
API (e.g., foo in Figure 3); and implements this API over
some local state. To replicate such a service via a stack
of log-structured protocols, we split it into two parts: a
Wrapper (exposing foo) and an Applicator (exposing the
IApplicator API in Figure 2 and internally implementing
foo). Rather than directly execute foo, the Wrapper
serializes an incoming request (without executing it) and
calls propose on the top-most engine.

Subsequently, the Applicator receives this request from
the top engine via the apply upcall, executes foo, and
returns the response to the top engine. The engine stack
then relays this response back to the waiting propose
call, completing the service invocation. Figure 3 shows
the path of the request through the system. The Appli-
cator on each server also receives and executes proposals
by other servers in the system. In effect, the engine stack
provides it with all proposals in the system — originating
at different servers, and issued by multiple threads on
each server — in the total order imposed by an underlying
shared log. For proposals that did not originate at the lo-
cal server, the response of the Applicator is discarded by
the engine stack, since the local Wrapper is not waiting
for the response.



The apply upcall on the Applicator is called by a
single thread (which we call the apply thread). All ac-
cesses by the Applicator to the LocalStore occur within a
transaction handle provided as a parameter to the apply
upcall. This transaction handle provides failure atomic-
ity: if the Applicator crashes or throws an exception, all
activity within the apply upcall is rolled back.

The workflow described above obtains linearizable
semantics for arbitrary read-write requests (issued con-
currently within multiple threads on different servers)
by funneling all activity through the Applicator’s single-
threaded apply upcall on each server. However, the
application can optimize read-only requests by calling
sync on the top-most engine rather than propose. The
sync call directs the engine stack to check the current
tail of the shared log and apply any new updates to the
Applicator. When the sync returns, the LocalStore is
guaranteed to reflect all completed writes in the system
(i.e., sync returns a read-only transaction on the Local-
Store representing a linearizable snapshot). The Wrapper
can then directly invoke accessor functions in the Lo-
calView from any thread using the returned transaction
handle, rather than route the request via the engine
stack to the Applicator’s single thread. As a result, at
any point in time there can only be a single writer to the
LocalStore (i.e., the apply thread via the RWTx) but
many readers (via the ROTx returned by each sync).

For performance, the application may want to main-
tain soft state within the Applicator (e.g., pre-computed
aggregates). This is problematic for failure atomicity,
since modifications to such state will occur outside the
LocalStore transaction and not be automatically rolled
back on exceptions. To allow the Applicator to update
soft state, the engine stack issues a postApply upcall
if the previous apply committed successfully; the Ap-
plicator can safely update soft state within this second
upcall. The Wrapper can read (but not update) soft
state maintained by the Applicator; this is safe as long
as the Applicator acquires read-write locks in the apply
upcall and releases them in the postApply.

3.2 The Bottom Engine

The BaseEngine resides at the bottom of the stack and
implements the IEngine API in Figure 2 over a shared
log. The primary role of the BaseEngine is to play the
log forward and apply each entry to the application
above it. To do so, it maintains a cursor in the Local-
Store. As the BaseEngine plays each entry, it creates a
LocalStore transaction context; updates its cursor in the
store within the transaction; and then calls apply on the
application via the single apply thread (which it spawns
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Figure 3: The lifecycle of a proposal.

on creation and owns). When the application returns
— having processed the entry and issued writes to the
transaction — the BaseEngine commits the transaction
on the LocalStore. A committed transaction is visible
but not immediately durable on the LocalStore, which
we flush periodically in a background thread (we can
replay the entry from the log if the server reboots).

The BaseEngine is a passive component; it does not
initiate log-playing on its own. Rather, it plays the log
forward in response to either a sync or a propose. On
a sync, the BaseEngine checks the tail of the shared log
to find the last committed entry; and then plays the log
forward, applying each entry to the application, until
it reaches that tail position. Once this point is reached,
the BaseEngine creates a local read-only transaction
on the LocalStore (which now reflects all log entries
until the tail) and returns it to the application. For
high throughput, the BaseEngine queues multiple sync
calls behind a single outstanding tail check on the log,
borrowing a trick found in other SMR systems [9, 11, 47].

On a propose, the BaseEngine appends the entry to
the shared log; and then plays the log forward until
the newly appended entry, passing each entry up to the
apply upcall of the application via the apply thread.
When the application apply responds to the newly ap-
pended entry, the BaseEngine relays the response to the
waiting propose call. In effect, the propose call imple-
ments a form of replicated RPC that is durable, since
it returns only once the entry is stored durably on the
shared log; failure-atomic, since it is executed on each
server within a LocalStore transaction; and linearizable,
since it is ordered via the shared log before executing on
the local server.

The BaseEngine is also responsible for the mecha-
nism of GC: it periodically trims the shared log in a



background thread. However, it does not determine the
policy of GC; the application or other engines use the
setTrimPrefix call to tell the BaseEngine what prefix
of the log can be trimmed safely.

3.3 The Middle Engines

Engines can be stacked on top of each other, as shown
in Figure 3; i.e., an engine can implement the IEngine
APT over another engine with the same API. When the
application calls propose, the engine piggybacks its own
header on the proposed entry and passes the entry along
to the engine below. The piggybacked header is then
stored durably and atomically with the entry within the
shared log. The engine can also choose to delay calling
propose on the engine below (e.g., for batching); or
manipulate the contents of the entry in some way (e.g.,
compress, encrypt, etc.).

An engine can also implement the TApplicator API
and register apply/postApply upcalls with the engine
below it. The engine has access to the LocalStore and
can modify it within the apply upcall using the supplied
transaction handle. When the underlying engine provides
a new log entry to it via the apply upcall, the engine
extracts and processes its own header; modifies its local
state; and passes on the log entry to the application (or
engine) above it by invoking apply in turn. The engine
can also drop the entry to filter it from the engines above
it. For example, Figure 4 shows the code for an engine
that can be used to block entries from reaching the stack
above it.

As with other layered systems, cross-layer inspection
between engines is discouraged (e.g., an engine typically
cannot interpret headers belonging to other engines). In
principle, engines also have isolated state: they are not
typically allowed to access, interpret, or modify local
state in the LocalStore belonging to other engines. How-
ever, this isolation can be overridden in certain cases:
we found at least one reasonable use case that requires
an engine to be able to modify any state (i.e., the Brain-
DoctorEngine, which we describe in the next section).

In addition to piggybacking headers on outgoing en-
tries, engines can also generate new log entries on their
own; either in response to some external-facing API
that can be invoked either by the application or some
command-line tool (e.g., the toggleBlock call in Figure
4); or based on some internal trigger like a timer. In
this case, the engine marks the entry’s header before
proposing it (in Figure 4, by setting a message type);
the apply upcall returns immediately without sending
it further up the engine stack.

template <class ReturnType, class EntryType>
class BlockingEngine : IEngine, IApplicator {
Future<ReturnType> propose(EntryType e){
e.BHdr = BEngineHdr{.msgtype=APP};
return downstream->propose(e);
¥
Future<ROTx> sync(){
return downstream->sync();
}
ReturnType apply (RWTx txn, EntryType e, logpos_t
pos){
if (e.BHdr .msgType==TOGGLE) {
if (txn->get ("blocked")=="True")
txn->put ("blocked", "False");
else
txn->put ("blocked", "True");
return Unit;
}
blocked = (txn->get("blocked")=="True");
if (blocked)
throw BlockedException{};
else
return upstream->apply(txn, e, pos);
}
void postApply(EntryType e, logpos_t logpos){
if (e.BHdr.msgType==APP && !blocked)
upstream->postApply (e, logpos);
¥
void toggleBlock(){
EntryType e;
e.BHdr = BEngineHdr{.msgType=TOGGLE};
downstream—>propose(e) .get () ;
¥
void setTrimPrefix(logpos_t pos){
downstream->setTrimPrefix(pos);
}
}

Figure 4: An example engine.

Most engines implement setTrimPrefix as a pass-
through call; i.e., they do not have an opinion on garbage
collection. However, as we describe later, some engines
are specifically responsible for controlling GC (e.g., an
engine that is responsible for backing up the shared log
may want to delay its trimming). Each such engine tracks
its own opinion on the trimmable prefix, as well as the
last prefix that was relayed to it by the engine above it. It
invokes setTrimPrefix on the engine below it with the
minimum of these two values, ensuring that trimming
respects both constraints. As a result, the BaseEngine



only trims a prefix of the log if every engine in the stack
allows it.

3.4 Discussion

Dynamic Updates: Inserting a new engine into the stack
can be fraught: if an engine begins to operate before
all servers are updated, it can cause inconsistent state
across servers. In practice, we use a two-phase upgrade
protocol to insert engines. In the first phase, we perform
a rolling upgrade to add the engine to the stack: it can
immediately piggyback its header on outgoing proposals,
and generate its own proposals, but is not allowed to
change the LocalStore within its apply upcall. In other
words, it can append to the shared log but not reflect
those appends on the local store.

Once all servers have the new engine, we enable it by
sending a command via the log itself. This ensures that
the effects of the engine are visible on the local store
beyond a consistent log position, retaining the property
that the LocalStore is a deterministic function of the
shared log. The protocol to remove an engine is the exact
reverse: we first disable the engine via the log, and then
perform a rolling upgrade to remove it from the stack.

This update protocol requires all activity within an
engine’s apply upcall to be guarded by a flag which can
only be toggled via the log. Further, adding an engine
requires us to first upgrade all servers in the deployment
with the new binary. We assume that we can upgrade,
kill, or fence servers via container infrastructure [51].

Static Typing: Each engine is templated on an Entry-
Type (which is an application-specific serializable object
containing a map of headers and a specific application
payload) and a ReturnType, which is returned both by
the propose call of the engine as well as the apply upcall
of the engine or application above it. The ReturnType
is typically a variant consisting of all the return types
of the individual functions used by the application (for
example, if the application is a Queue service, Return-
Type would consist of {PushResponse, PeekResponse,
PopResponse}).

In our first implementation, each entry was a literal
stack of buffers (similar to a network packet); each engine
would push/pop its own header. However, we found that
such a layout was brittle against stack upgrades: engines
could push/pop the wrong header if they were playing
entries generated by a previous iteration of the engine
stack. Since the entry is instead a map of headers, each
engine can simply check within the apply upcall if its
own header is within the entry and accordingly process
or pass it through to the engine above.

Exception Handling: Each engine’s apply upcall oper-
ates inside a nested sub-transaction within the supplied
transaction. If the upcall throws an exception, its own
updates to the LocalStore are discarded and the entry
does not reach the engines above it; but the updates of
the engine below it are preserved as long as it catches the
exception. As a result, the application can throw benign,
deterministic exceptions within its apply upcall (e.g., a
row_not_ found error in a Table store) without inter-
fering with the operation of the protocol engines below
it. The BaseEngine relays the exception to the waiting
propose thread and re-throws it, preserving RPC-like
semantics for the propose call.

Note that if the exception is non-deterministic (i.e.,
thrown on one server but not on another), state can
become inconsistent across servers. Oddly enough, the
prescribed course of action for the system is completely
opposite based on the determinism of the exception: if
it is deterministic, the right thing to do is to continue
processing the next log entry (maintaining availabil-
ity since consistency is guaranteed); whereas for a non-
deterministic exception, crashing immediately is the only
safe option (giving up availability to ensure consistency).
In practice, we maintain a list of exceptions known to
be non-deterministic (e.g., an out-of-space error in the
LocalStore) in order to crash immediately when we en-
counter them; and rely on checksums to quickly catch
any inconsistencies.

What constitutes an application? The LocalStore ex-
poses a key-value API (which can be implemented by
an embedded store such as RocksDB [3]). As a result,
the application can be any single-node database that
stores its local state on this API. As described earlier,
the Wrapper/Applicator components can transparently
wrap such an application so that all writes are funneled
to it via the single apply thread (as long as the appli-
cation is deterministic for single-threaded writes). The
application itself is oblivious to the existence of replicas;
any coordination across replicas occurs via log-structured
protocols.

Importantly, the application is not constrained to ac-
cess storage via the key-value store API; it can instead
implement its own persistence layer, as long as it provides
a LocalStore API for the engines to use. For example, a
target application is SQLite [4]; in this case, the Applica-
tor relays SQL commands to SQLite, while engines store
data via the LocalStore API implemented over SQLite.
In this manner, we can leverage SMR to replicate any
stateful black box (potentially one that uses NVM data
structures) rather than force applications to be built
over a particular storage API.



4 A TALE OF TWO DATABASES
(AND NINE ENGINES)

Delos implements the log-structured protocol abstraction
in modern C+4. We use RocksDB as the LocalStore
(with a second, experimental SQLite implementation)
and Thrift as a serialization format for entries. The
BaseEngine runs over the VirtualLog [9], which imple-
ments fault-tolerant consensus. Each Delos database
is typically replicated on 5 or 7 machines (similar to
ZooKeeper [31] or Chubby [14]); it does not natively
provide sharding or cross-shard transactions, which can
be obtained via a separate layer above it.

Table 5 lists the nine log-structured protocols we im-
plemented. We mark whether each engine maintains
state (i.e., it is a replicated state machine) and/or filters,
modifies, observes, or delays entries en route to other
engines (i.e., it is a protocol). We described the opera-
tion of the BaseEngine in the previous section; we now
describe the engines we layered above it.

4.1 Rapid deployment of DelosTable

Our initial stack for DelosTable consisted of a single en-
gine — the ViewTrackingEngine — interposed between the
application (DelosTable) and the bottom BaseEngine.

A. ViewTrackingEngine (2018): This engine coordi-
nates the trimming of the log. It tracks the playback
position of each server; when all servers have played the
log past some point X, the log can be trimmed until
X. The ViewTrackingEngine relays this safe trim posi-
tion by invoking setTrimPrefix on the engine below
it. When a server appears to have crashed (and is no
longer playing the log), the ViewTrackingEngine stops
including it in its calculation of the safe trim position. As
its name suggests, the ViewTrackingEngine effectively
tracks a membership ‘view’ of servers playing the log.

The ViewTrackingEngine on a server adds a header on
each outgoing propose with its local playback position.
To determine this position, it queries the LocalStore for
the last log position that has been applied and flushed
durably (recall that we only flush the LocalStore peri-
odically, not immediately after each apply). When its
apply upcall is invoked with a new log entry, the View-
TrackingEngine extracts this log position and updates its
local state. The local state consists of a map from server
ID to playback position. In this manner, each server in
the system constructs a deterministic, consistent view
of the playback positions across all servers.

To add and remove servers to this view, the View-
TrackingEngine uses the log itself as a discovery and
failure-detection mechanism, respectively. A server is
added to the view the first time it appends an entry in

the log. Conversely, if a server has not appended an entry
into the log for more than some time period, another
server can eject it from the known view via a command
in the log. Importantly, the view is a deterministic func-
tion of the log; and as a result, so is the decision to trim
a prefix of the log.

B. ObserverEngine (2018): In our first deployment,
we also layered an ObserverEngine between DelosTable
and the ViewTrackingEngine. The ObserverEngine is
a lightweight layer that measures and externally logs
end-to-end latencies on each propose/sync call; our
standard practice is to layer one above each engine. The
ObserverEngine has two benefits. First, it allows us to
track down latency slowdowns to a specific engine in the
stack. Second, it separates monitoring from core logic; as
a result, we can measure the performance of each engine
— and different versions of the same engine — in a generic
way. In contrast, if we had allowed engines to measure
their own performance, we would need safeguards against
inadvertent changes to the monitoring code and variance
in this code across engines.

4.2 Adding features to DelosTable

C. BrainDoctorEngine (2019): We added new features to
DelosTable by deploying new log-structured protocols in
the stack. One such protocol is the BrainDoctorEngine,
which acts as a simple pass-through engine, with one
addition: an external call that accepts a list of raw Lo-
calStore writes and proposes it into the log. When the
engine processes this control command in its apply up-
call, it directly applies the writes to the LocalStore.

As the name suggests, the BrainDoctorEngine is used
in emergencies to perform “brain surgery” on the key-
value store, directly changing the state of a running
Delos database without going through application logic.
We added this feature after we encountered a bug in
DelosTable that caused secondary indices to be written
incorrectly; to fix the state of the running database, we
had to route around the Table logic to directly change
the secondary indices in the LocalStore.

D. LogBackupEngine (2019): We added another en-
gine in response to a customer request for Point-in-Time
restore. To enable this, we needed to copy the shared
log to a backup store before trimming it; we could then
reconstruct any intermediate state of the database by
starting from a prior snapshot backup and playing the
log backup forward. Backing up the shared log efficiently
— without overloading any single node, or experiencing
delays due to a node failure — required all the nodes to
coordinate.



Year | Engine Prod | State/Prot | Use Case LOC
2018 | Base Both | Yes/No State Machine Replication over the log. 1081
2018 | ViewTracking | Both | Yes/No Track durable copies of DB for trimming the log. | 844
2018 | Observer Both | No/Yes Monitor underlying stack. 208
2019 | BrainDoctor | Both | Yes/No Edit LocalStore directly, bypassing DB. 274
2019 | LogBackup Both | Yes/No Coordinate learners to back up the log. 688
2020 | SessionOrder | Zelos | Yes/Yes Enforce session-ordering guarantee. 521
2020 | Batching Zelos | No/Yes Improve throughput via batching + group commit. | 512
2021 | Time None | Yes/No Implement distributed time-outs. 904
2021 | Lease None | Yes/Yes Enable 0-RTT strongly consistent reads. 371

Figure 5: Different Log-structured Protocol Engines.

The LogBackupEngine uses the log itself as a coordi-
nation mechanism. The state of the protocol is a map of
“bids” made by each node for uploading disjoint segments
of the log. Each node proposes control commands to bid
for segments; these commands are applied to the map
of bids. If a node successfully bids for a segment, it then
begins uploading that segment to the backup store. Once
it completes the backup, it marks the bid as completed
via another proposal.

The LogBackupEngine delays trimming the log until it
has been backed up. It does so by calling setTrimPrefix
on the layer below it whenever the backed-up prefix ad-
vances. As described earlier, setTrimPrefix in each en-
gine is implemented so each layer relays the constraints
given to it: accordingly, a prefix is only trimmed by the
BaseEngine if the ViewTrackingEngine and LogBack-
upEngine both agree. Other signals can further delay
trimming; for example, a snapshot backup manager at-
tached to the LocalStore calls setTrimPrefix on the
stack once it backs up a snapshot corresponding to some
prefix.

4.3 Stronger guarantees for Zelos

E. SessionOrderEngine (2020): In 2020, we implemented
and deployed the second Delos database: a ZooKeeper
clone called Zelos. The first version of Zelos reached
production within months by re-using the DelosTable
stack verbatim, replacing only the application layer at the
top. However, we ran into a snag at this point: to be fully
compatible with ZooKeeper, Zelos needed to emulate
its unique ordering guarantees. Specifically, ZooKeeper
provides a session-ordering guarantee: within a session,
if a client first issues a write and then a concurrent read
(without waiting for the write to complete), the read
must reflect the write. This property is stronger than
linearizability, which allows concurrent writes and reads
to be ordered arbitrarily; and encompasses exactly-once
semantics [39].

The SessionOrderEngine stamps outgoing proposals
with a sequence number. When the proposals are applied,
the SessionOrderEngine apply only allows entries up-
stream if they arrive (i.e., appear in the log) in sequence
order, filtering them otherwise (e.g., #11 arrives before
#10). The propose then re-proposes all entries since the
disorder event (e.g., #10 and #11). Out-of-order arrivals
are rare; the Delos stack itself does not reorder proposals
as they flow down to the log or up through the apply
upcalls, and most log implementations also retain order
(e.g., via TCP connections to some leader). However,
disorder can occur due to leader changes within the log
implementation, or due to code changes in the Delos
stack.

Unlike other engines, the SessionOrderEngine does
not have a one-to-one mapping from each propose call
to a propose on the underlying sub-stack; instead, it
may need to do multiple proposals on the sub-stack
for retries. As a result, it implements its own RPC-
like bookkeeping and signaling between the apply and
propose threads; each propose is notified by postApply
directly, rather than waiting for the return value of the
sub-stack propose. This style of short-circuiting has the
side-effect that the engine can return from its propose
earlier than the engines below it.

F. TimeEngine (2021): One of the required features
for Zelos involved distribution of the update stream. In
ZooKeeper, non-voting followers can play the command
stream directly from the ZAB [34] protocol, which in
turn allows them to create secondary indices and caches
over data stored in a ZooKeeper cluster. To duplicate this
feature, we needed two pieces of functionality. First, we
created a passive stack with a subset of engines, as shown
in Figure 6 (e.g., omitting the ViewTrackingEngine since
we did not want these servers counted as durable first-
class replicas). Second, we needed to delay the trimming
of the log by some period of time to give non-voting
followers a chance to play entries from it.
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Figure 6: Production Delos stacks.

To support time-based trimming in a way that is ro-

bust to clock skew and drift, we implemented a TimeEngine.

The TimeEngine allows the creation of a timer object
which fires once a fixed amount of time has elapsed on
a constant number of servers within the cluster. The
timer is created via an external API of the engine, which
inserts a command in the log; each server inserts a cor-
responding time-out command once enough time has
passed on its local clock since it encountered the cre-
ation command. Time-based trimming is implemented
via an external trimming module that creates a timer
event at some log position; and once it expires, calls
setTrimPrefix on the top of the engine stack. The
TimeEngine reached production just after the data for
this paper was collected.

4.4 Improving performance

G. BatchingEngine (2020): Since Zelos was intended to
replace ZooKeeper at Facebook, performance parity was
a requirement. Zelos incorporated a BatchingEngine into
its stack to improve Zelos throughput. The Batchin-
gEngine validated our approach in one significant way: it
was immediately usable across both databases with zero
customization, allowing us to accelerate both databases
via a single engine.

The BatchingEngine illustrates an interesting point
about the placement of functionality in Delos. If batching
were implemented in the database above the engine
stack, it would have to be re-implemented separately
by DelosTable and Zelos. Conversely, if batching were
implemented below the engine stack / within the shared
log (i.e., at the level of the consensus protocol), the
BaseEngine would have to create a separate LocalStore

transaction for each sub-entry in the batch (since it
would be layered above the batching logic and oblivious
to it). Situating batching in the engine stack enables a
group commit optimization where the entire batch is
applied in a single LocalStore transaction.

H. LeaseEngine (2021): The BascEngine has a leader-
less design above the shared log: any server can propose
a command, while each server can sync with the shared
log to ensure strong consistency. This design has the ad-
vantage that the loss of a single server does not disrupt
availability (as long as the shared log is still available).
However, the sync before a strongly consistent read in-
curs a round-trip to the shared log, which in a typical im-
plementation involves accessing either a MultiPaxos [52]
leader or a majority quorum of acceptors.

In contrast, designs with a strong leader (e.g., Raft [44]
and MultiPaxos [52]) can provide 0-RTT strongly con-
sistent reads at the leader. This property is particularly
useful in geo-distributed systems where each data item
has a home region where most accesses originate; the
leader can be situated in this region to enable strongly
consistent reads without cross-region interaction.

We can enable such a capability in the Delos stack
simply by inserting a LeaseEngine into the stack. The
LeaseEngine elects a server as a designated proposer
above the shared log. Reads at this server can be satisfied
with strong consistency without accessing the shared log
(i.e., the LeaseEngine’s sync returns immediately as long
as the server has a valid lease). The initial acquisition
and renewal of the lease occur via commands in the
log; as does the takeover of the lease by other servers if
the lease-holder fails. In a sense, 0-RTT reads are not a
property of a leader-based consensus protocol, but rather
enabled by having a single designated proposer; which
explains why leases can be implemented by inserting an
engine into the stack above the shared log.

5 EVALUATION

We use a combination of production data and bench-
marking experiments to evaluate the utility and overhead
of log-structured protocols. As of May 2021, DelosTable
is in production on 107 clusters and handles more than
3B transactions per day in aggregate, each of which can
be a complex relational query. Zelos is in production on
155 clusters and handles 6.5B writes and 30B reads per
day on the ZooKeeper API.

5.1 The Overhead of Layering

Log-structured protocols are lightweight. We first report
on the deployed footprint of each log-structured protocol
in our production systems. Figure 7 summarizes a single



Zelos
Batching
SessionOrder
ViewTracking
BrainDoctor
LogBackup
Base

DelosTable
ViewTracking

BrainDoctor

LogBackup

Base

0 20 40 60 80 100

% of CPU samples
postApply E—— pply Em=—m
commitTX HEEEE beginTX 1

Figure T: Fleet-wide sampling of the apply thread in
production clusters shows layering adds low overhead.

week of stack samples across all DelosTable and Zelos
production clusters. This data is obtained by a tool that
runs on each Facebook server and periodically samples
the current stack for all running threads in the process;
we filter out the samples belonging to DelosTable/Zelos
processes, and further extract out the stack for the apply
thread.

Each graph in Figure 7 has a single bar for each
engine deployed in the production deployment (exactly
matching the stacks described in Figure 6). The bar for
an engine describes the percentage of apply thread stack
samples that include that engine’s apply method. From
the graphs, we can see that the apply thread spends
most of its time in the application’s apply upcall. Each
individual engine adds very little overhead.

For both databases, a substantial amount of time is
spent by the BaseEngine constructing the LocalStore
transaction (in the beginTX call) and subsequently com-
mitting it (in the commitTX call). In addition, the Zelos
postApply does a significant amount of work; these cy-
cles are spent by the application to perform ZooKeeper-
specific functionality such as triggering watches. In De-
losTable, postApply does not show up since it is used
mostly for lightweight activity such as updating in-
memory caches.

The low overhead of log-structured protocols is further
supported by our experience replacing ZooKeeper with
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Figure 8: Apply thread wutilization across the fleet for
a single day, measured over 1-minute periods: for each
minute, we show the three clusters with the max / p99
/ p90 utilizations. For any given minute, 90% of the
clusters are below 10% apply utilization.

Zelos. Zelos achieves performance parity with ZooKeeper
on most of our production and benchmarking workloads.
For example, on a mixed workload with 50% 100-byte
writes (SetData) and 50% 100-byte reads (GetData),
Zelos offers 56K /s operations compared to 36K/s from
ZooKeeper on identical hardware. This speed-up cannot
be attributed entirely to log-structured protocols (for
example, Zelos is written in C++ rather than Java);
however, it does provide evidence that a layered design
does not hurt performance.

The apply thread is not the bottleneck. A single-threaded
protocol stack is easy to operate and reason about; but
does it hurt performance? To answer this question, we
show the utilization of the apply thread across all De-
losTable and Zelos production clusters. Figure 8 shows
the clusters with the max / p99 / p90 utilizations for each
minute over a single day. We see that max utilization
rarely spikes higher than 60%. For any given minute, 90%
of the clusters are below 10% apply utilization. There
are two reasons for this. First, cluster workloads are
typically dominated by read-only operations (which are
not sequenced through the apply thread) rather than
read-write transactions. Second, clusters that run at high
write rates are bottlenecked by SSD bandwidth for the
consensus protocol (which requires synchronous writes)
rather than the apply thread. In our experiments, we
typically only saturate the apply thread if we relax the
durability of the consensus protocol (i.e., not flush to
SSD); or if our writes are computationally expensive

)

(e.g., compute some expensive predicate).

5.2 The Benefits of Layering

Log-structured protocols can optimize performance sig-
nificantly. In Figure 9, we run a set of 5 clients against
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Figure 10: When enabled, the LeaseEngine allows zero-
coordination strongly consistent reads at the server hold-
ing a lease, lowering read latency by 100X for a deploy-
ment distributed across the continental USA.

a 5-node cluster (within a single data center) at differ-
ent write rates (for 100-byte writes), obtaining a set of
throughput-latency points for DelosTable with and with-
out the BatchingEngine. For a maximum acceptable p99
latency of 20ms, we get a 2X speed-up. We get similar
results for 100-byte writes on Zelos on the same HW
(not shown).

To show the LeaseEngine in action, we use a geo-
distributed DelosTable cluster with 5 servers distributed
across the continental USA (this is a common deployment
mode for us when disaster tolerance is required). We
collocate a client on one of the servers and measure the
P99 read latency on a 1-minute sliding window. In the
first part of Figure 10, the LeaseEngine is disabled; a
strongly consistent read requires the server to reach out
to a quorum (with a p99 latency of roughly 48ms). At
T=155s, we enable the LeaseEngine by sending an admin
command to the server, which turns on the LeaseEngine
via a command in the shared log. Once the local server
has a lease, strongly consistent reads do not require cross-
region coordination and complete within 220 ps (which is
reflected by the graph once the 1-minute sliding window
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Figure 11: Screenshot of ObserverEngine-enabled pro-
duction dashboard for monitoring engines on a cluster.

advances). At T=385s, we disable the LeaseEngine again;
latency shoots back up to 48ms.

As this experiment shows, engines (and the optimiza-
tions they enable) can be dynamically turned on and
off, ensuring correct behavior by synchronizing via the
log; in the case of the LeaseEngine, the absence of such
synchronization would result in consistency violations
(e.g., if one server had the engine enabled and thought it
had a lease; while another server did not have it enabled
and ignored the lease).

Log-structured protocols enhance observability. An im-
portant benefit of engine layering is the ability to monitor
— via the ObserverEngine — the performance of each layer
in a generic way. Figure 11 is a screenshot from an ac-
tual production dashboard for a geo-distributed Zelos
cluster, showing the 1-minute p99 latency of propose
calls at each layer. As the dashboard shows, the Batchin-
gEngine adds latency while accumulating a batch, while
the other engines incur low latency. The lines in the
dashboard for each engine are in stack order, with one
notable exception: the lowest line in the graph is the
SessionOrderEngine rather than the BaseEngine, due to
the short-circuiting described in Section 4.3.

6 DISCUSSION

Why a stack? In most cases, engines are independent
state machines that do not affect each other, and hence
can be executed in parallel (for example, the apply logic
for the ViewTrackingEngine and TimeEngine can exe-
cute simultaneously). Some engines do need to be ordered
with respect to others (e.g., the SessionOrderedEngine
filters entries from other engines). We considered organiz-
ing engines in a DAG; however, we found that a linear
stack provides simplicity for developers (e.g., around



exception handling) and operators (e.g., each cluster is
configured as a simple list of engines). Further, as we
showed, we are not bottlenecked on the apply thread in
our production clusters.

If we bottleneck on the apply thread in the future
for different workloads and HW, we can execute engine
apply logic in parallel for a single entry. We also plan to
explore applying multiple entries from the shared log in
parallel, if we know a priori that the entries have disjoint
read/write sets on the LocalStore. Applying entries out-
of-order requires ensuring prefix recoverability [40] (i.e.,
the LocalStore must always correspond to a prefix of the
shared log). Another approach is to execute transactions
speculatively within the propose thread before appending
intentions to the log, and validate (rather than execute)
within the apply thread [11, 12, 46].

Developer / Operator experience: New engineers on
the project often found it difficult to reason about whether
a module should be written as an engine. We came up
with simple rules of thumb: A) the module must ei-
ther be stateful (i.e., a replicated state machine), or B)
control or observe what other engines and the applica-
tion see (i.e., a protocol). Engineers also erred in the
other direction, implementing reusable logic with tight
application-coupling, but usually pivoted quickly after a
round of code review. For example, the BatchingEngine
was first implemented as a part of Zelos; but then cleanly
layered out during code review so that integrating it with
DelosTable was seamless.

A significant source of complexity for engineers was
the lack of a clean protocol for dynamic updates. We
initially did not provide such a protocol, expecting each
engine to handle its own roll-out in custom ways. Ad-hoc
stack updates resulted in inconsistency events across
servers in production, which caused us to formalize the
two-phase update protocol in Section 3.4.

Surprisingly, engine roll-out has been the only source of
inconsistency in production so far, despite initial worries
that developers would find it difficult to write determin-
istic code. We built extensive protection against this
failure mode via incremental checksums of the Local-
Store, but so far have encountered only events linked to
ad-hoc stack updates. In the future, we may consider
deterministic execution techniques [20, 21, 41] for safety.

The Delos Hourglass: Delos enables a three-tier archi-
tecture: multiple databases with different APIs running
over a narrow waist of log-structured protocols (as de-
scribed in this paper); and a virtualized shared log that
supports multiple consensus protocols underneath (as
described previously [9]). In recent months, we have im-
plemented new databases rapidly in this architecture:
for example, an undergraduate intern recently developed

a new queue service called DelosQ over the summer;
while one of our engineers built a new locking service
in roughly two months. Importantly, these new services
are nearly production-ready out of the box and do not
impose much custom load on operators. All Delos data-
bases have unified tooling for creating a new cluster,
upgrading binaries, manually reconfiguring membership
within a cluster, offline consistency / integrity checking,
and recovering from backups.

7 RELATED WORK

A number of systems have proposed composing appli-
cations from collections of fine-grained replicated state
machines [11, 45, 55]. Delos advances this state of the
art by stacking replicated state machines, such that
each one can filter or alter the entries applied upstream
or proposed downstream. The log-structured protocol
is a specific high-level programming abstraction above
a shared log; prior systems have proposed other such
abstractions, including fine-grained objects [11], compos-
able data structures [55], and stateful serverless func-
tions [33].

Log-structured protocols are inspired by classical re-
search on layering in network stacks [17, 32, 48] and
storage [28, 29, 35]. Stacking has been proposed before
for replicated systems at a lower level of abstraction. For
example, Delos itself layers log implementations via the
VirtualLog abstraction [9]. Using Lamport’s terminol-
ogy [38], the log-structured protocols in Delos comprise a
stack for learners (i.e., above the log abstraction) whereas
the VirtualLog in Delos stacks acceptors (i.e., under the
log abstraction). The difference is subtle but significant:
any functionality that requires local materialized state
(e.g., ViewTrackingEngine) or optimizes access to it (e.g.,
BatchingEngine via group commit) can only be imple-
mented as a replicated state machine over the shared
log, rather than within the shared log itself.

Log-structured protocols are directly inspired by repli-
cation systems from the 90s such as Horus [54], Ensem-
ble [42], and BAST [26], which created modular, layered
stacks for group communication. One difference from De-
los relates to the target abstraction (SMR over a shared
log vs. group communication). By substituting the shared
log for the process group as the central abstraction, Delos
extends ideas from the group communication literature
(such as protocol layering) to a broader class of replicated
systems. The underlying shared log can be implemented
by any consensus protocol (including Raft [44] and Mul-
tiPaxos [52]). In addition, the interface between layers
in Horus is rich: 16 types of downcalls and 14 types of
upcalls [53]; as well as 16 protocol properties such as



causal delivery, best effort delivery, etc. that each layer
either requires of the one below it or inherits / provides
on its own. In contrast, Delos has an intentionally narrow
API (propose/sync and apply), designed explicitly to
lower the implementation burden for new engines, as well
as simple semantics (i.e., the engine API is linearizable
and durable, with no options for weaker semantics). In
hindsight, these choices proved important for the success
of Delos in a production setting, lowering complexity for
developers and operators.

8 CONCLUSION

Log-structured protocols provide the benefits of State
Machine Replication while enabling code reuse and con-
solidated operations across multiple databases. At Face-
book, we composed nine log-structured protocols into two
production databases with significantly different APIs,
allowing engineers to interchangeably develop or oper-
ate either database. Other areas such as networks and
filesystems have benefited hugely from layered design;
the log-structured protocol stack gives us similar advan-
tages by enabling simple, flexible, and reliable replicated
databases. New log-structured protocols — and improve-
ments or fixes to existing protocols — can immediately
benefit multiple databases in production without any
additional porting effort.
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