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Abstract
The shared log is an abstraction for building layered con-
sensus systems that are simple to develop, deploy, evolve,
and operate. Shared logs emerged from systems research
and have seen significant traction in industry over the past
decade. In this paper, we describe some design principles for
consensus-based systems, based on our experience building
and operating real-world shared log databases in the wild.

1 Introduction

Consensus-based systems form the foundation of today’s com-
puting platforms, enabling ubiquitous, always-on services that
can store and process data with strong guarantees around dura-
bility and availability. Such systems are notoriously difficult to
design, build, operate, and evolve in the face of complex fail-
ure patterns and arbitrary asynchrony. In practice, deployed
systems such as ZooKeeper [10], Raft [16], and etcd [2] are
complex, monolithic codebases consisting of multiple inter-
twined protocols – e.g., single-slot consensus, multi-slot or-
dering, membership, materialization, etc. – with each node
playing different roles within each protocol. This complexity
translates to reduced reliability and code velocity.

In other types of systems, abstraction has proved to be
a powerful tool for reducing and corralling complexity; for
example, OS abstractions such as processes, address spaces,
and block devices hide the complexity and diversity of hard-
ware; whereas networking abstractions such as protocol layers
enable us to independently solve problems such as routing
and reliable communication. Can similar abstractions help us
simplify consensus-based systems?

The shared log abstraction provides one answer. A shared
log is an append-only address space that is fault-tolerant and
shared – i.e., multiple clients can append to it and read from it
concurrently with strong semantics. The shared log approach
to consensus appeared in its modern form in the Hyder [7]
and Corfu [5] systems; subsequently, it generated a number
of follow-up research systems [9, 11, 14, 15, 17, 20]; and has
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Figure 1: The Shared Log Approach

been directly deployed at massive scale within a number of
different production systems [1, 3, 4], while influencing a
number of related systems [12, 13, 19].

In this paper, we reflect on a decade of real-world expe-
rience with a specific lineage of systems: two research pro-
totypes called Corfu [5] and Tango [6]; and a production
system called Delos [4]. We describe how the shared log ab-
straction sheds light on the placement of functionality within
a consensus-based system; and list a number of principles
gleaned from developing and deploying these systems in pro-
duction. Though these principles are most easily explained
in the context of a shared log database, we expect them to
generalize to any consensus-based system.

2 A Tale of Two Layers: the Database and the
Log

The vast majority of consensus-based systems are designed
over the State Machine Replication (SMR) abstraction [18].
In SMR, an arbitrary black box object (for example, say an
implementation of a counter) is executed redundantly on mul-
tiple nodes, with each node maintaining a full copy of the



object’s state. Each mutating command (e.g., an increment on
the counter) is first sequenced in a global, durable total order
of commands; and then applied to the black box on each node.
To serve an accessing command (e.g., a get on the counter) on
a particular node, we first synchronize the local copy of the
object with the global, durable total order; and then execute
the command on the copy.

Most SMR frameworks provide a simple API that allows
any black box object to be wrapped and transparently repli-
cated. In the example above, let us say the interface of the ob-
ject is an AbstractCounter; and its black box implementation
is a LocalCounter. To use SMR, we can write a Wrapping-
Counter that implements the AbstractCounter interface; any
external application can then interact with a WrappingCounter
and obtain linearizable semantics. When the increment call is
invoked on the WrappingCounter, it first proposes the unexe-
cuted command to the SMR framework; which stores the data
on a global, durable total order; and then in turn applies the
command to the application in that total order.

Note that the SMR abstraction fundamentally divides the
system into two layers: the database, which is a set of nodes
executing copies of the black box object, as well as the wrap-
ping logic to propose commands and apply them back to those
copies; and the log, which is a set of nodes storing the global
total order. The database is effectively a materialization of the
log. Mapping this to Lamport’s terminology for the theory of
consensus, we use the terms proposer or learner to refer to
the database layer; and the term acceptor to refer to the log
layer.

Prior to the shared log abstraction, this clean layering ex-
isted only in the theory of consensus. Existing practical sys-
tems did not explicitly separate these two layers; typically, a
database (either a standalone instance or a shard in a parti-
tioned system) would be replicated on a set of three or five
nodes, each of which operated as both a learner and an ac-
ceptor. In effect, the SMR abstraction is implemented in such
systems in a monolithic way, mixing the logic of forming
and storing the total order (i.e., the log) with the code for
materializing the total order (i.e., the database).

The shared log abstraction splits the SMR platform into
two, separating proposers/learners from acceptors via a simple
API. Clients can append entries, obtaining a log position
(which is effectively a logical timestamp); invoke checkTail
to obtain the first unwritten log position at the tail of the log;
read the first entry in a supplied range of log positions; and
trim a prefix of the log.

As an analogy, think of the SMR platform as a filesystem
and the shared log as a block device. In much the same way
that a block device makes it easier to build a filesystem with-
out worrying about hardware internals (e.g., HDD vs. SSD),
a shared log helps us write an SMR layer without reasoning
about the internals of the consensus protocol. The SMR layer
is then free to focus on the complexity of materialization,
snapshot management, query scalability, single-node failure

atomicity, etc., in much the same way that a filesystem can fo-
cus on file-grain multiplexing, directories, crash consistency,
etc. When we roll out a new consensus protocol, we do not
need to rewrite the SMR layer, in much the same way that we
do not need rewrite a filesystem just to support a new type
of block device. Finally, the SMR layer and the shared log
can reside on entirely different sets of machines, in much the
same way that a filesystem can operate over remote block
storage.

Who stores what in the Shared Log? In classical SMR,
any database replica (or proposer) can propose a command.
The SMR abstraction is explicitly designed to support multi-
master operation. There is no notion of leadership above the
SMR abstraction. The shared log consists of unexecuted in-
puts – effectively, arbitrary pieces of code – that are executed
deterministically by each database replica on playback. To
use a concrete example, if the application is a simple counter,
then the log entries can literally consist of “increment by 10”
or “decrement by 5”.

However, in some cases, such redundant execution can be
overly expensive. For example, if the command is “scan the
DB and sum all entries", it is wasteful to have each database
replica execute the full scan. As a result, systems will often
execute the command at a particular database replica and
then propose an output to the SMR layer. Note that the SMR
layer is oblivious to whether an input or an output has been
proposed; in either case, it stores the command in the shared
log and then applies it to each database replica. To use the
example of a counter, log entries can be “set to 55”.

When outputs are stored in the shared log, it is no longer
safe to directly apply each entry from the shared log to local
state. The proposing database replica generated the log entry
based on some locally materialized snapshot of database state
(corresponding to prefix [0, X) of the log); but by the time
it appends the entry, the log might have grown, in which
case the new entry lands at some position Y, such that there
are multiple intervening entries generated by other proposers
between X and Y. The generated output in entry Y can only
be applied to the database if the intervening entries did not
invalidate it (e.g., by modifying some key that was used to
generate Y). In the counter example, two database replicas
might read the current counter state as 54; append commands
“set to 55” at the same time in consecutive log slots. In this
case, we accept the first entry but reject the second entry.

3 Principles for Consensus-Based Systems

A natural consequence of building a layered system is that
it becomes possible to characterize the scaling, performance,
and reliability properties of each layer separately; as well as
reason about the placement of functionality in each layer. As
we developed and deployed these layered systems in produc-
tion, we noted a number of principles that seemed generally
true for any consensus-based system. We now describe these.



3.1 Scalability

A: Acceptors can be scaled out via sharding. The shared log
hides the complexity of the acceptor role behind a simple, data-
centric API. In conventional consensus systems where each
node acts as a proposer / learner / acceptor (or equivalently,
as both a database and a log replica), we do not have the
ability to separately scale each role. However, in shared log
systems we can disaggregate the acceptors from the proposers
/ learners, which in turn allows us to scale the acceptor layer
separately (by scaling the shared log).

To scale the acceptor role, we observe that a shared log
is simply an append-only address space. As with any other
address space, we can scale log-reads linearly by striping the
shared log over different sets of nodes. To scale appends, we
have multiple options: we can have an off-path sequencer
which does not see I/O and can consequently run at millions
of appends / sec (e.g., see Corfu [5]); or we can rotate an
I/O-bound sequencer role over a set of machines; or use de-
terministic merge to stitch together the order generated by
multiple separate sequencers.

Scaling acceptors is particularly useful when acceptor stor-
age is slow relative to other parts of the system. For example,
if the database is an in-memory data structure and the shared
log runs on slow drives (e.g., older SATA SSDs), we can de-
couple the two layers and run a small number of database
nodes against a larger set of acceptors.

B: Learner playback limits (write) scale. Ultimately, a
shared log is a broadcast medium: every database replica (or
learner) has to see every log entry. As a result, even if we
scale the acceptor layer to millions of log-reads (by sharding
acceptors) and appends / sec (by using an off-path sequencer),
the write throughput of the database is still limited by the
ability of each database node to ingest entries from the shared
log and apply them to its local state.

In simple designs, all playback happens on a single thread;
if this is the case, then the entire database is typically bottle-
necked on a single pegged “apply thread” on each database
replica. For example, if we can process 50K transactions per
second on that core, then that’s the total write speed of the
database, regardless of the number of learners or acceptors
we use. Common techniques from the database and SMR lit-
erature can be used to optimize the apply thread. For example,
a group commit optimization can drive up the throughput of
the single "apply thread" at the cost of higher latency. Al-
ternatively, we can parallelize playback for non-conflicting
transactions on multiple cores and allow them to commit out
of order, which adds complexity in the recovery path since
the state at the database replica no longer matches an exact
prefix of the shared log.

Even if we parallelize playback to the point where we
are utilizing all cores on the database replica, we are still
limited by the ingress bandwidth on each database replica.
Having flexibility in whether we store inputs vs. outputs in the

shared log can help balance ingress bandwidth against CPU
overhead on the database replicas. For example, consider a
command that scans the entire database to delete all keys
with odd values; this can be expressed as a very compact
input – literally a lambda – in the shared log that triggers
significant computation (and local I/O) on each learner; or
as a potentially large output on the shared log (a list of keys
that match the predicate) triggering very little computation
on each learner.

Once we are pegged either on learner CPU or ingress band-
width, the only avenue to scale the system for writes is to
shard learners, as proposed by Tango [6]: i.e., the state of the
database is partitioned into shards (e.g., blue, red, and green);
and a blue replica only stores the blue shard and materializes
only the blue entries from the shared log. In practice, the key
blocker for such a design proved to be blast radius: e.g., if we
lose access to a single slot in the shared log after it is written
(but before it is played), every learner across all shards will
have to block processing at that entry until we can resolve the
problem.

C: Strongly consistent reads can be scaled linearly by
adding learners. We can scale read throughput in a shared
log database simply by adding more learners. As described in
Section 2, each learner serves reads (which can be arbitrary ac-
cessors, including read-only queries on a SQL database or get
operations on a key-value store) by first synchronizing with
the shared log, which involves a checkTail invocation. This
protocol ensures strong consistency even in a multi-master
setup where any database replica can propose new commands
to the shared log. Unfortunately, invoking checkTail on the
underlying shared log is an expensive operation, requiring us
to either go to a sequencer or some quorum of acceptors (or a
quorum on each acceptor shard if we shard acceptors).

To mitigate this problem, a number of shared log databases
(including Delos) use a “bus-stand” optimization where multi-
ple reads can queue up behind the next checkTail. In the un-
optimized case, each read triggers an individual checkTail;
this is similar to a passenger catching a cab from a source (the
learner) to a destination (the shared log) and back again. With
the optimization, we allow a single outstanding checkTail
invocation to the shared log; this is similar to a bus shuttling
back and forth between the source and destination. Incoming
reads have to wait for the bus to return to the station before
they can board it. In practice, this means each read waits for
2 full checkTail invocations – e.g., 2 RTTs to some sequencer
– in the worst case (i.e., if it arrived just after the bus – the
checkTail invocation – left the station).

3.2 Latency

D. Log-based Leases can support zero-coordination reads.
Some systems require low-latency strongly consistent reads

with zero coordination (i.e., served by a single node). We can
achieve this in a shared log database by electing a particular



database replica as a designated proposer; all writes and reads
are directed to this replica. The election of this designated pro-
poser can happen above the log itself, by appending a special
election command with the semantics that players must reject
all subsequent entries not generated by the specified proposer
(until the next election command). If we also assign a timeout
to the election command’s validity, we can enable low-latency
strongly consistent reads at the designated proposer. Note that
the timeout can be in real-time or in logical time defined by
log positions; in the latter case, rather than wait out time, we
can burn log positions via dummy entries to evict the old
designated proposer.

In other consensus-based systems [8], a single, strong
master or leader role is viewed as key to enabling zero-
coordination reads. However, a shared log design makes it
obvious that leadership above the log – which is required for
zero-coordination reads – is distinct from leadership below
the log: we can enable zero-coordination reads even in sys-
tems that do not necessarily have a conventional leader role
below the log (e.g., out-of-path sequencers).

Note that zero-coordination reads are possible at any
database replica if we are okay sacrificing consistency; in
a shared log database, the application can simply access the
local materialized state without syncing with the shared log.
This is a one-line change in shared log databases and routinely
used to support stale snapshot reads.

E: Acceptors and Learners can be isolated from each
other to prevent I/O interference. In cases where the database
resides on durable storage (e.g., local materialized state is
stored in RocksDB or SQLite), decoupling learners from ac-
ceptors (either on different drives on the same machines; or
entirely different tiers) can isolate I/O between the two. Ac-
ceptor latency is critical for shared log databases, since a
missing/slow log entry can stall the entire database. Learners
can interfere with acceptors in at least two ways. First, the
potentially random access patterns of the learner can interfere
with the sequential writes on the acceptors. Second, learner
activity can trigger filesystem interactions requiring locks to
be held (e.g., when we delete snapshots in RocksDB); which
can combine with I/O stalls (often lasting tens of seconds)
on older SSDs to delay log writes. Separating learners from
acceptors alleviates both these problems; in addition, we can
also use cheaper drives for the learners compared to the accep-
tors, which require a relatively small amount of fast storage
(since the shared log is continuously being trimmed or moved
to backup storage).

F: No single acceptor needs to be in the critical path
of a write: In protocols such as Raft [16], the “leader” is
a designated proposer; but also a required acceptor in the
write quorum. This requirement reduces the effectiveness of
quorums in lowering tail latency, particularly since the leader
is likely to be a heavily loaded node.

In a shared log design, the acceptor quorum is hidden en-
tirely behind the shared log API: any notion of leadership

within the log is entirely separate from the concept of a des-
ignated proposer above the log (though the two can be col-
located for performance). As a result, we do not require a
particular acceptor to be in the critical path of writes.

3.3 Reliability

G. Proposers / Learners and Acceptors have different relia-
bility requirements. For durability, we need just one database
replica to survive; this is sufficient to ensure the durability of
all commands played by that replica. Similarly, availability
is ensured as long as one database replica is still alive and
can access the shared log. In contrast, the shared log layer has
more onerous requirements for reliability: we need a quorum
of log replicas for durability; and a quorum of log replicas as
well as the sequencing mechanism for availability.

Practically, separating the database and the log layer allows
engineers to respond with different degrees of urgency to
failures in each layer. A single crashed database replica is not
particularly problematic in a 3-node deployment; however,
a single crashed log replica is quite dangerous in a 3-node
deployment, since a single additional failure can result in the
loss of an acknowledged write.

To restate this in consensus terminology: learners have less
stringent requirements for fault-tolerance than acceptors. As
a result, disaggregating them into separate layers can result in
systems that are easier to operate. Further, we can bootstrap
the database by using some existing storage system like a
key-value store as a slow, inefficient shared log; allowing us
to quickly roll out a functional first version of the database
while developing the acceptor logic over a longer period of
time, as we did for Delos.
H. Proposers / Learners and Acceptors have different re-
liability characteristics due to code velocity. In production
environments, a key factor impacting the reliability of a ser-
vice is code velocity: failures are often linked to rollouts of
new code. Anecdotally, a common operational scenario for
Delos in converged mode (i.e., where the database and the
log are collocated) involved multiple nodes crash-looping in
the middle of a rollout.

In a shared log system, the database above the log is modi-
fied quite frequently to add new features and query optimiza-
tions; whereas the log itself is much less frequently updated,
since its functionality does not evolve much over time. In
consensus terms: learners are upgraded more frequently than
acceptors; and hence more likely to fail. Even worse, when
the learner and acceptor roles are collocated, the relatively
common and benign failure of a learner is converted into a
serious acceptor failure.

By decoupling the database and the log into separate ser-
vices, we ensure that the service that’s updated more fre-
quently (and hence subject to more risk) is the one that has
a less strict reliability requirement; and isolated from the
service that has a more strict reliability requirement.



I. The Scheduler decides who lives and dies. Consensus-
based systems often include sophisticated failure-detection
primitives (e.g., based on gossip). In cloud environments, such
systems are deployed via schedulers such as Kubernetes and
Twine. As a result, it can be dangerous for systems to rely on
their own internal mechanisms. In one particular Delos inci-
dent, Twine lost contact with all Delos nodes in a cluster and
marked them as offline; but Delos itself reported good health
based on an internal gossip mechanism. In such a state when
the scheduler’s view of node health does not match reality
(as observed by the system’s own mechanisms), the danger
is that the scheduler has the ability to take unilateral actions
(e.g., revoking a quorum of nodes) based on its assessment.
In Delos, we found that failure detection for membership was
best handled by the scheduler (via an interface that let any new
node know which other node it was replacing), while we used
various internal protocols for different types of leadership
above and below the log.

4 Conclusion

The shared log is an abstraction for consensus; as such, its
primary value lies in its ability to simplify the development
and deployment of consensus-based systems by hiding the
complexity of asynchrony, failures, and code velocity. How-
ever, a side-effect of abstraction is a greater understanding
of how different types of functionality should be distributed
in a system and interact with each other. In this paper, we
presented a number of insights and principles obtained over
multiple years of building and operating real-world shared
log databases. We believe that these principles generalize to
any consensus-based system and can simplify other types of
replicated databases.
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